Discussion 10 Worksheet Global maxima and minima

Date: 9/24/2021
MATH 53 Multivariable Calculus

1 Finding Extrema

Find the global maxima and minima of the following functions on their indicated domains.

1. The function $f(x, y)=x^{2}-y$ on the domain $D=[0,2] \times[0,2]$.
2. The function $f(x, y)=x-y$ on the domain $\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1\right\}$.
3. The function $f(x, y)=x^{2}-x y+y^{2}-3 y$ on the region bounded by the x and y axes and the line $x+y=4$.

1.1 Past midterm problems

1. Find the following. If an expression is undefined, say so.

- $d y / d x$, where $x=2 \sin t, y=3 \cos t$. Express your answer as a function of t.
- The area of the region between the curve whose expression in polar coordinates is $r=e^{\theta}$ $(0 \leq \theta \leq \pi / 2)$, the line $\theta=0$, and the line $\theta=\pi / 2$.
- $\lim _{(x, y) \rightarrow(0,0)} x / y$.
- The equation of the plane tangent to the surface $z=(x+y)^{1 / 2}$ at the point where $x=2, y=7$.
-

$$
\frac{\partial^{2}}{\partial x \partial y}(f(x) g(y)),
$$

where f and g are differentiable functions. (Express your answer in terms of f and g and their derivatives.)
-

$$
\int_{0}^{1} \vec{\jmath} \times\left(t^{2} \vec{\imath}+e^{-t^{2}} \vec{\jmath}+(\tan t) \vec{k}\right) d t
$$

where $\vec{\imath}, \vec{\jmath}$, and \vec{k} are the standard basis vectors in \mathbb{R}^{3}.
2. \quad - Use the cross product to find numbers p, q, r, and s such that the plane $p x+q y+r z+s=0$ goes through the points $(1,0,0),(0,2,0)$, and $(0,0,3)$.

- Now find a DIFFERENT set of numbers $p^{\prime}, q^{\prime}, r^{\prime}$, and s^{\prime} such that the plane $p^{\prime} x+q^{\prime} y+$ $r^{\prime} z+s^{\prime}=0$ still goes through these three points.

3. Consider the curve described in polar coordinates by $r=2+\cos 2 \theta$.

- Explain, without doing any computation, why the area enclosed by the curve must be less than 9π.
- Compute the area enclosed by the curve.
- Sketch the curve.

Note: These problems are taken from the worksheets for Math 53 in the Spring of 2021 with Prof. Stankova.

